Package 'arcgisbinding'

Title: Bindings for ArcGIS
Description: This package provides classes for loading, converting and exporting ArcGIS datasets and layers in R.
Authors: Esri
Maintainer: Esri <[email protected]>
License: file LICENSE
Version: 1.0.1.305
Built: 2025-01-03 06:14:43 UTC
Source: https://github.com/R-ArcGIS/r-bridge

Help Index


Bindings for ArcGIS

Description

Collection of classes and functons for loading, converting and exporting ArcGIS datasets and layers in R.

Introduction

For a complete list of exported functions, use library(help = "arcgisbinding").

References


ArcGIS product and license information

Description

Initialize connection to ArcGIS. Any script running directly from R (i.e. without being called from a Geoprocessing script) should first call arc.check_product to create a connection with ArcGIS. Provides installation details on the version of ArcGIS installed that arcgisbinding is communicating with. Failure to run this function successfuly implies a problem with ArcGIS installation or environment variables for ArcGIS.

Usage

arc.check_product()

Value

a named list is returned with the following components:

app

Product: ArcGIS Desktop (i.e. ArcMap), or ArcGIS Pro. The name of the product connected.

license

License level: Basic, Standard, or Advanced are the three licensing levels available. Each provides progressively more functionality within the software. See the "Desktop Functionality Matrix" link for details.

version

Build number: The build number of the release being used. Useful in debugging and when creating error reports.

dll

DLL: The dynamic linked library (DLL) in use allowing ArcGIS to communicate with R.

References

ArcGIS Desktop Functionality Matrix

Note

Additional license levels are available on ArcGIS Desktop: Server, EngineGeoDB, and Engine. These license levels are currently unsupported by this package.

Examples

info <- arc.check_product()
info$license # ArcGIS license level
info$version # ArcGIS build number
info$app # product name
info$dll # binding DLL in use

Class "arc.data"

Description

arc.data class and methods

Usage

## S3 method for class 'arc.data'
x[i, j, drop]

### dplyr methods:
  ## S3 method for class 'arc.data'
filter(.data, ..., .dots)
  ## S3 method for class 'arc.data'
arrange(.data, ..., .dots)
  ## S3 method for class 'arc.data'
mutate(.data, ..., .dots)
  ## S3 method for class 'arc.data'
group_by(.data, ..., add)
  ## S3 method for class 'arc.data'
ungroup(x, ...)

Arguments

i, j, ...

indices specifying elements to subset

drop

if TRUE coerce the result to the lowest possible dimension and remove the geometry attribute

x

A arc.data object

.data

A arc.data object

.dots

other arguments (see package dplyr)

add

To add to the existing groups, use add = TRUE

Details

TODO arc.data object is data.frame with geometry attribute. To access geometry use arc.shape.

Extends

Class data.frame, directly.

dplyr methods

  • filter: Return rows with matching conditions

  • arrange: Arrange rows by variables

  • mutate, transmute: Add new variables

  • select: Select/rename variables by name

  • group_by: Group by one or more variables

  • slice: Select rows by position

  • distinct: Select distinct/unique rows

Note

You can display the arc.data object. Geometry information, first 5 and last 3 row will be showed.

See Also

arc.shape, arc.open, arc.select

Examples

d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")))
  d
## Not run: 
geometry type   : Point
WKT             : PROJCS["USA_Contiguous_Albers_Equal_Area_Conic",GEOGCS["GCS_...
WKID            : 102003
    FID LATITUDE LONGITUDE ELEVATION   OZONE        X         Y    text
1     0  39.1447 -123.2065       194 0.04650 -2298092  515557.4 Value_0
2     1  39.4030 -123.3491       420 0.04969 -2301588  546772.7 Value_1
3     2  37.7661 -122.3978         5 0.05000 -2273948  347691.4 Value_2
4     3  37.9508 -122.3569        23 0.05799 -2264847  366623.2 Value_3
5     4  36.6986 -121.6354        36 0.05860 -2241776  214412.1 Value_0
... ...      ...       ...       ...     ...      ...       ...     ...
191 190  34.0598 -117.1462         0 0.16449 -1921585 -170440.0 Value_2
192 191  34.2412 -117.2756      1384 0.16470 -1928645 -148045.5 Value_3
193 192  34.1065 -117.2732         0 0.17360 -1931774 -162775.2 Value_0

## End(Not run)

# subset rows 1,3 and 5 with corresponding features
d135 <- d[c(1,3,5),]



# dplyr support
require("dplyr")
filter(d, ELEVATION > 1800)

#add new elevation column in meters
mutate(d, elevm = ELEVATION * 0.3048)

Class "arc.dataset"

Description

arc.dataset S4 class

Details

The dataset_type slot possible values are described in the referenced "dataset properties – data type" documentation. For feature datasets, extent contains four double values: (xmin, ymin, xmax, ymax). The fields slot includes the details of the ArcGIS data types of the relevant fields, which include data types not directly representable in R.

Slots

.info

internal

path

file path or layer name

dataset_type

dataset type

Methods

arc.delete
arc.metadata

References

  1. ArcGIS Help: Dataset properties – dataset type

See Also

arc.open, arc.table-class, arc.feature-class, arc.datasetraster-class, arc.datasetrastermosaic-class

Examples

ozone.file <- system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")
d <- arc.open(ozone.file)
d # print dataset info

Class "arc.datasetraster"

Description

arc.datasetraster S4 class. Dataset class for raster objects. Creates a dataset object with type = raster.

Details

A raster dataset is any valid raster format organized into one or more bands. Each band consists of an array of pixels (cells), and each pixel has a value. A raster dataset has at least one band. Raster data is a discrete data representation in which space is divided into uniform cells, or pixels.

Extends

Class arc.dataset-class, directly.

arc.dataset-classarc.datasetraster-class\begin{array}{c} \code{arc.dataset-class} \\ \downarrow \\ \code{arc.datasetraster-class} \end{array}

Slots

sr

Spatial reference.

extent

Spatial extent of the dataset. The Extent describes the rectangle (boundary) containing all the raster dataset's data.

pixel_type

The pixel type of the referenced raster dataset.

compression_type

The compression type.

nrow

The number of rows.

ncol

The number of columns.

bands

raster dataset bands information.

Methods

arc.raster

Create a arc.raster object

dim

retrieves dimensions of a arc.dataset object

names

return bands names

arc.write

TODO

References

  1. ArcGIS Help: Raster dataset properties

See Also

arc.raster, arc.write


Class "arc.datasetrastermosaic"

Description

arc.datasetrastermosaic S4 class. Dataset class for mosaic objects.

Details

Mosaic datasets are made up of a collection of rasters. Mosaic structure efficiently stores and manages multiple rasters for visualization and analysis. Detailed information about mosaic datasets can be found in ArcGIS reference for mosaic datasets.

R-ArcGIS bridge handles mosaic data I/O using the arc.open() function. The mosaic dataset opened using arc.open can be processed on the fly by converting it to a raster object within R using the arc.raster function. Properties of a mosaic dataset such as extent, pixel_type, nrow, ncol and mosaicking rules. Mosaicking rules determine how a series of potentially intercepting rasters are displayed as a single raster. Mosaicking rules go beyond only visualization and can be used to stitch together different rasters making up a mosaic.

Mosaicking rules define how intersections between different rasters within the mosaic dataset are handled and are made up of method and operator. Simply put, method defines which raster will be placed on top of the other for visualization in cases where they overlap and operator defines how the intersection between overlapping rasters in the mosaic dataset will be handled. The information on mosaicking rules can be found under ArcGIS reference for mosaicking rules.

Extends

Class arc.feature-class, arc.datasetraster-class directly and arc.table-class by class "arc.feature-class", arc.dataset-class by class "arc.table-class".

References

  1. ArcGIS Help: What is a mosaic dataset?

See Also

arc.open, arc.raster, arc.select


Delete dataset

Description

delete dataset

Usage

arc.delete(x, ...)
## S4 method for signature 'arc.dataset'
arc.delete(x, ...)

Arguments

x

string full path or arc.dataset object

...

reserved

Value

logical, TRUE on success.

Examples

table_path <- file.path(tempdir(), "data.gdb", "mytable")
  arc.write(table_path, data=list('f1'=c(23,45), 'f2'=c('hello', 'bob')))

  # delete table
  arc.delete(table_path)

  # delete database
  arc.delete(dirname(table_path))

Get geoprocessing environment settings

Description

Geoprocessing environment settings are additional parameters that affect a tool's results. Unlike parameters, they are not directly input as values. Instead, they are values configured in a separate dialog box, and then and interrogated and used by the script when run.

Usage

arc.env()

Details

The geoprocessing environment can control a variety of attributes relating to where data is stored, the extent and projection of analysis outputs, tolerances of output values, and parallel processing, among other attributes. Commonly used environment settings include workspace, which controls the default location for geoprocessing tool inputs and outputs. See the topics listed under "References" for details on the full range of environment settings that Geoprocessing scripts can utilize.

Value

return enviroment list

References

Note

  • This function is only available from within an ArcGIS session. Usually, it is used to get local Geoprocessing tool environment settings within the executing tool.

  • This function can only read current geoprocessing settings. Settings, such as the current workspace, must be configured in the calling Geoprocessing script, not within the body of the R script.

Examples

## Not run: 
  tool_exec <- function(in_para, out_params)
  {
    env = arc.env()
    wkspath <- env$workspace
    ...
    return(out_params)
  }

## End(Not run)

Class "arc.feature"

Description

arc.feature S4 class.

Details

Container for shape information pertaining to extent and shape from a table class.

Extends

Class arc.table-class, directly and arc.dataset-class by class "arc.table".

Slots

shapeinfo

geometry information (see arc.shapeinfo)

extent

spatial extent of the dataset

Methods

arc.select

TODO

names

return names of columns

arc.shapeinfo

return geometry information

See Also

arc.open, arc.dataset-class, arc.table-class, arc.datasetraster-class, arc.datasetrastermosaic-class

Examples

ozone.file <- system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")
d <- arc.open(ozone.file)
names(d@fields) # get all field names
arc.shapeinfo(d) # print shape info
d                # print dataset info

Convert PROJ.4 Coordinate Reference System string to Well-known Text.

Description

The arc.fromP4ToWkt command converts a PROJ.4 coordinate reference system (CRS) string to a well-known text (WKT) representation. Well-known text is used by ArcGIS and other applications to robustly describe a coordinate reference system. Converts PROJ.4 stings which include either the '+proj' fully specified projection parameter, or the '+init' form that takes well-known IDs (WKIDs), such as EPSG codes, as input.

Usage

arc.fromP4ToWkt(proj4)

Arguments

proj4

PROJ.4 projection string

Details

The produced WKT is equivalent to the ArcPy spatial reference exported string:

arcpy.Describe(layer).SpatialReference.exportToString()

Value

return WKT string

References

  1. OGC specification 12-063r5

  2. ArcGIS Help: What are map projections?

Note

The '+init' method currently only works with ArcGIS Pro.

See Also

arc.fromWktToP4

Examples

arc.fromP4ToWkt("+proj=eqc") # Equirectangular

arc.fromP4ToWkt("+proj=latlong +datum=wgs84") # WGS 1984 geographic

arc.fromP4ToWkt("+init=epsg:2806") # initalize based on EPSG code

Convert a Well-known Text Coordinate Reference System into a PROJ.4 string.

Description

Convert a well-known text (WKT) coordinate reference system (CRS) string to a PROJ.4 representation. PROJ.4 strings were created as a convenient way to pass CRS information to the command-line PROJ.4 utilities, and have an expressive format. Alternatively, can accept a well-known ID (WKID), a numeric value that ArcGIS uses to specify projections. See the 'Using spatial references' resource for lookup tables which map between WKIDs and given projection names.

Usage

arc.fromWktToP4(wkt)

Arguments

wkt

WKT projection string, or a WKID integer

Value

return PROJ.4 string

References

  1. ArcGIS REST API: Using spatial references

  2. OGC specification 12-063r5

  3. ArcGIS Help: What are map projections?

See Also

arc.fromP4ToWkt

Examples

d <- arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding"))
arc.fromWktToP4(arc.shapeinfo(d)$WKT)

arc.fromWktToP4(4326) # use a WKID for WGS 1984, a widely
                      # used standard for geographic coordinates

Open dataset, table, or layer

Description

Open ArcGIS datasets, tables, rasters and layers. Returns a new arc.dataset-class object which contains details on both the spatial information and attribute information (data frame) contained within the dataset.

Usage

arc.open(path)

Arguments

path

file path (character) or layer name (character)

Value

An arc.dataset-class object

Supported Formats

  • Feature Class: A collection of geographic features with the same geometry type (i.e. point, line, polygon) and the same spatial reference, combined with an attribute table. Feature classes can be stored in a variety of formats, including: files (e.g. Shapefiles), Geodatabases, components of feature datasets, and as coverages. All of these types can be accessed using the full path of the relevant feature class (see note below on how to specify path names).

  • Layer: A layer references a feature layer, but also includes additional information necessary to symbolize and label a dataset appropriately. arc.open supports active layers in the current ArcGIS session, which can be addressed simply by referencing the layer name as it is displayed within the application. Instead of referencing file layers on disk (i.e. .lyr and .lyrx files), the direct reference to the actual dataset should be used.

  • Table: Tables are effectively the same as data frames, containing a collection of records (or observations) organized in rows, with columns storing different variables (or fields). Feature classes similarly contain a table, but include the additional information about geometries lacking in a standalone table. When a standalone table is queries for its spatial information, e.g. arc.shape(table), it will return NULL. Table data types include formats such as text files, Excel spreadsheets, dBASE tables, and INFO tables.

  • rasters: Rasters represent continuous geographic data in cells, or pixels, of equal size (square or rectangular). Spatial data represented on this rasters are also known as grided data. In contrast to spatial data structures represented in feature classes, rasters contain information on spatially continuous data.

References

Note

Paths must be properly quoted for the Windows platform. There are two styles of paths that work within R on Windows:

  • Doubled backslashes, such as: C:\\Workspace\\archive.gdb\\feature_class.

  • Forward-slashes such as: C:/Workspace/archive.gdb/feature_class.

Network paths can be accessed with a leading \\\\host\share or //host/share path. To access tables and data within a Feature Dataset, reference the full path to the dataset, which follows the structure: <directory>/<Geodatabase Name>/<feature dataset name>/<dataset name>. So for a table called table1 located in a feature dataset fdataset within a Geodatabase called data.gdb, the full path might be: C:/Workspace/data.gdb/fdataset/table1

See Also

arc.select, arc.raster, arc.write

Examples

## open feature
filename <- system.file("extdata", "ca_ozone_pts.shp",
                          package="arcgisbinding")
d <- arc.open(filename)
cat('all fields:', names(d@fields), fill = TRUE) # print all fields

## open raster

filename <- system.file("pictures", "logo.jpg", package="rgdal")
d <- arc.open(filename)
dim(d) # show raster dimension

Load or create "arc.raster" object

Description

Methods to create a arc.raster object from scratch, extent, arc.open object or a raster file (inside or outside of a file geodatabase).

Usage

## S4 method for signature 'arc.datasetraster'
arc.raster(object, bands, ...)

## S4 method for signature 'arc.datasetrastermosaic'
arc.raster(object, bands, ...)

## S4 method for signature 'NULL'
arc.raster(object, path, dim, nrow, ncol, nband, extent,
  origin_x, origin_y, cellsize_x, cellsize_y, pixel_type, nodata, sr, ...)

Arguments

object

codearc.datasetraster-class object.

bands

optional, integer. List of bands to read (default: all bands).

...

optional additional arguments such as nrow, ncol, extent, pixel_type, resample_type to be passed to the method. Use overwite=TRUE to overwite existing dataset.

path

file path (character) or layer name (character).

dim

optional. List for number of rows and columns of the raster.

nrow

optional, integer > 0. Number of rows for the raster or mosaic dataset. The default is object@nrow.

ncol

optional, integer > 0. Number of columns for the raster or mosaic dataset. The default is object@ncol.

nband

integer > 0. Number of bands to create.

extent

optional, list. extent of raster to be read. The default is object@extent.

origin_x

optional. Minimum x coordinate.

origin_y

optional. Minimum y coordinate.

cellsize_x

optional. Size of pixel in x-axis.

cellsize_y

optional. Size of pixel in y-axis.

pixel_type

optional. Type of raster pixels. For details about different pixel types see pixel_type. See also ArcGIS Help: Pixel Types. The default is object@pixel_type.

nodata

numeric, value for no data values.

sr

optional transform raster to spatial reference. The default is object@sr.

Value

arc.raster returns a raster object (type of arc.raster-class.).

References

  1. ArcGIS Help: Raster Introduction

  2. ArcGIS Help: Pixel Types

  3. ArcGIS Help: Mosaic Introductions

  4. ArcGIS Help: Mosaicking Rules

See Also

arc.open, arc.write, arc.raster-class

Examples

## resample raster

r.file <- system.file("pictures", "cea.tif", package="rgdal")
r <- arc.raster(arc.open(r.file), nrow=200, ncol=200, resample_type="CubicConvolution")
stopifnot(r$nrow == 200 && r$resample_type == "CubicConvolution")

## Not run: 
> r
type            : Raster
pixel_type      : U8 (8bit)
nrow            : 200
ncol            : 200
resample_type   : CubicConvolution
cellsize        : 154.256892046808, 154.557002731725
nodata          : NA
extent          : xmin=-28493.17, ymin=4224973, xmax=2358.212, ymax=4255885
WKT             : PROJCS["North_American_1927_Cylindrical_Equal_Area",GEOGCS["...
band            : Band_1 
## End(Not run)


## create an empty raster

r = arc.raster(NULL, path=tempfile("new_raster", fileext=".img"), extent=c(0, 0, 100, 100), nrow=100, ncol=100, nband=5, pixel_type="F32")
stopifnot(all(dim(r) == c(100, 100, 5)))

## Not run: 
> dim(r)
nrow  ncol nband
 100   100     5 
## End(Not run)

Reference Class "arc.raster"

Description

A raster dataset is any valid raster format organized into one or more bands. Each band consists of an array of pixels (cells), and each pixel has a value. A raster dataset has at least one band. Raster data is a discrete data representation in which space is divided into uniform cells, or pixels.

Fields

sr

Get or set spacial reference

extent

Get or set extent. Use it to read a portion of the raster.

nrow

Get or set number of rows.

ncol

Get or set number of columns.

cellsize

Get pixel size.

pixel_type

Get or set pixel type. For details see ArcGIS help on pixel types.

pixel_depth

Get pixel depth. Pixel depth/Bit depth (1, 2, 4, 8, 16, 32, 64). For details see ArcGIS help on pixel types.

nodata

Get or set nodata value

resample_type

Get or set resampling type. For details see ArcGIS help on rasampling.

colormap

Get or set color map table. Return is a vector of 256 colors in the RGB format.

bands

Get list of raster bands

band

Get a single raster band

Methods

names

return bands names

dim

retrieves dimensions

$show()

show object

$pixel_block(ul_x, ul_y, nrow, ncol, bands)

Read pixel values.

ul_x, ul_y - optional, upper left corner in pixels nrow, ncol - optional, size in pixels bands - optional, select band(s).

The values returned are always a matrix, with the rows representing cells, and the columns representing band(s), c(nrow*ncol, length(bands)) (see Example #1)

$write_pixel_block(values, ul_x, ul_y, ncol, nrow)

Write pixel values. (see Example #2)

ul_x, ul_y - optional, upper left corner in pixels nrow, ncol - optional, size in pixels

$has_colormap()

logical, return TRUE if raster has colormap

$attribute_table()

Query raster attribute table. Return data.frame object.

Raster datasets that contain attribute tables typically have cell values that represent or define a class, group, category, or membership.

$save_as(path, opt)

TODO (see Example #3)

$commit(opt)

End writing. (see Example #2.3)

opt - additional parameter(s): (default: "build-stats"), ("build-pyramid")

arc.write

Write to an ArcGIS raster dataset

See Also

arc.raster, arc.write, arc.datasetraster-class

Examples

## Example #1. read 5x5 pixel block with 10,10 offset
r.file <- system.file("pictures", "cea.tif", package="rgdal")
r <- arc.raster(arc.open(r.file))
v <- r$pixel_block(ul_x = 10L, ul_y = 10L, nrow = 5L, ncol= 5L)
dim(v) == c(25, 1)
#[1] TRUE TRUE

stopifnot(length(v) == 25)

## Example #2. process big raster
## 2.1 create new arc.raster
r2 = arc.raster(NULL, path=tempfile("r2", fileext=".img"),
                dim=dim(r), pixel_type=r$pixel_type, nodata=r$nodata,
                extent=r$extent,sr=r$sr)
## 2.2 loop by rows, process pixels
for (i in 1L:r$nrow)
{
  v <- r$pixel_block(ul_y = i - 1L, nrow = 1L)
  r2$write_pixel_block(v * 1.5, ul_y = i - 1L, nrow = 1L, ncol = r$ncol)
}
## 2.3 stop all writings and crete raster file
r2$commit()

## Example #3. resample raster
r <- arc.raster(arc.open(r.file), nrow=200L, ncol=200L, resample_type="BilinearGaussBlur")
## save to a different format
r$save_as(tempfile("new_raster", fileext=".img"))

## Example #4. get and compare all pixel values
r.file <- system.file("pictures", "logo.jpg", package="rgdal")
rx <- raster::brick(r.file)
r <- arc.raster(arc.open(r.file))
stopifnot(all(raster::values(rx) == r$pixel_block()))

Load dataset to "data.frame"

Description

Load dataset to a standard data frame.

Usage

## S4 method for signature 'arc.table'
arc.select(object, fields, where_clause, selected, sr, ...)

Arguments

object

arc.dataset-class object

fields

string, or list of strings, containing fields to include (default: all)

where_clause

SQL where clause

selected

use only selected records (if any) when dataset is a layer or standalone table

sr

transform geometry to Spatial Reference (default: object@sr)

...

optional additional arguments such as transformation - datum transformation string

Value

arc.select returns a data.frame object (type of arc.data).

Note

If object is arc.feature-class, the "shape" of class arc.shape-class will be attached to the resulting arc.data object.

See Also

arc.data, arc.open, arc.write

Examples

## read all fields
ozone.file <- system.file("extdata", "ca_ozone_pts.shp",
                          package="arcgisbinding")
d <- arc.open(ozone.file)
df <- arc.select(d, names(d@fields))
head(df, n=3)

## read 'name', 'fid' and geometry
df <- arc.select(d, c('fid', 'ozone'), where_clause="fid < 5")
nrow(df)

## transform points to "+proj=eqc"
df <- arc.select(d,"fid", where_clause="fid<5", sr="+proj=eqc")
arc.shape(df)

## datum transformation, from NAD_1983 to WGS_1984
## prepare dataset
x <- c(1455535.149968639, 1446183.62438038, 1447950.6349539757)
y <- c(478067.64943164587, 484500.4190463871, 479746.6336064786)
data_path <- file.path(tempdir(), "data.gdb", "test_datum")
## save as NAD_1983
arc.write(data_path, coords=cbind(x, y), shape_info=list(type="Point", WKID=2893))
## read and transform to WGS_1984
df <- arc.select(arc.open(data_path), sr=4326, transformation='NAD_1983_HARN_To_WGS_1984_2')
x <- arc.shape(df)$x
stopifnot(sprintf('%.8f', x[1]) == '-76.49626388')

Get "arc.shape" geometry object

Description

Get geometry object of arc.shape-class from arc.data object.

Usage

arc.shape(x)

Arguments

x

a data.frame object of type arc.data

Value

returns arc.shape-class

See Also

arc.shapeinfo, arc.select, arc.data

Examples

d <- arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding"))
df <- arc.select(d, 'ozone')

shp <- arc.shape(df)
stopifnot(length(shp) == nrow(df))

shp
## Not run: 
geometry type   : Point
WKT             : PROJCS["USA_Contiguous_Albers_Equal_Area_Conic",GEOGCS["GCS_...
WKID            : 102003
length          : 193

## End(Not run)

Class "arc.shape"

Description

arc.shape S4 class. Object arc.shape is a geometry collection.

Details

arc.shape is attached to an ArcGIS data.frame as the attribute "shape". Each element corresponds to one record in the input data frame. Points are presented as an array of lists, with each list containing (x, y, Z, M), where

Extends

Class list, directly.

Slots

.Data

internal

shapeinfo

geometry information, for mode details see arc.shapeinfo

Methods

[

signature(x = "arc.shape", i=numeric) select geometry subset

arc.shapeinfo

return geometry information

length

length of collection

See Also

arc.shape, arc.shapeinfo

Examples

d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), "FID")

shape <- arc.shape(d)
shape
## Not run: 
geometry type   : Point
WKT             : PROJCS["USA_Contiguous_Albers_Equal_Area_Conic",GEOGCS["GCS_...
WKID            : 102003
length          : 193

## End(Not run)

# access X and Y values
xy <- list(X=shape$x, Y=shape$y)

Get geometry information

Description

arc.shapeinfo provides details on what type of geometry is stored within the dataset, and the spatial reference of the geometry. The well-known text, WKT, allows interoperable transfer of the spatial reference system (CRS) between environments. The WKID is a numeric value that ArcGIS uses to precisely specify a projection.

Usage

## S4 method for signature 'arc.shape'
arc.shapeinfo(object)
  ## S4 method for signature 'arc.feature'
arc.shapeinfo(object)

Arguments

object

arc.feature-class or arc.shape-class object

Value

returns named list of :

type

geometry type: "Point", "Polyline", or "Polygon"

hasZ

TRUE if geometry includes Z-values

hasM

TRUE if geometry includes M-values

WKT

well-known text representation of the shape's spatial reference

WKID

well-known ID of the shape's spatial reference

References

  1. ArcGIS REST API: Using spatial references

  2. Spatial reference lookup

See Also

arc.open, arc.shape

Examples

d <- arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding"))
# from arc.feature
info <- arc.shapeinfo(d)
info$WKT   # print dataset spatial reference

# from arc.shape
df <- arc.select(d, 'ozone')
info <- arc.shapeinfo(arc.shape(df))

Class "arc.table"

Description

arc.table S4 class

Details

The fields slot includes the details of the ArcGIS data types of the relevant fields, which include data types not directly representable in R.

Extends

Class arc.dataset-class, directly.

Slots

fields

named list of field types.

Methods

arc.select

return data.frame. TODO

names

return names of columns

See Also

arc.open, arc.dataset-class, arc.feature-class

Examples

ozone.file <- system.file("extdata", "ca_ozone_pts.shp",
                          package="arcgisbinding")
d <- arc.open(ozone.file)
names(d@fields) # get all field names
arc.shapeinfo(d) # print shape info
d                # print dataset info

Write dataset, raster, feature, table or layer

Description

Export a data object to an ArcGIS dataset. If the data frame includes a spatial attribute, this function writes a feature dataset. If no spatial attribute is found, a table is instead written. If data is raster-like object, this function writes a raster dataset. See ‘Details’ section for more information.

Usage

arc.write(path, data, ..., overwrite = FALSE)

Arguments

path

full output path

data

Accepts input source objects (see ‘Details’ for the types of objects allowed).

...

Additional arguments:

  • coords list containing geometry. Accepts Spatial objects. If data is data.frame coords can be list of field names (see Example #2).

  • shape_info list. Required argument if data has no spatial attribute (see Example #2).

  • validate logical. Default FALSE. If TRUE makes the geometries topologically correct.

overwrite

overwrite existing dataset. default = FALSE.

Details

Export to a new table dataset when data type is:

  • named list of vectors (see Example #4)

  • data.frame

Export to a new feature dataset when data type is:

Export to a new raster dataset when data type is:

Below are pairs of example paths and the resulting data types:

  • C:/place.gdb/fc: File Geodatabase Feature Class

  • C:/place.gdb/fdataset/fc: File Geodatabase Feature Dataset

  • in_memory\logreg: In-memory workspace (must be run in ArcGIS Session)

  • C:/place.shp: Esri Shapefile

  • C:/place.dbf: Table

  • C:/place.gdb/raster: File Geodatabase Raster when data parameter is arc.raster or Raster* object

  • C:/image.img: ERDAS Imaging

  • C:/image.tif: Geo TIFF

References

Note

To write Date column type corresponding data column must have POSIXct type (see Example #4).

See Also

arc.open, arc.select, arc.raster

Examples

## Example #1. write a shapefile
fc <- arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding"))
d <- arc.select(fc, 'ozone')
d[1,] <- 0.6
arc.write(tempfile("ca_new", fileext=".shp"), d)

## create and write to a new file geodatabase
fgdb_path <- file.path(tempdir(), "data.gdb")


data(meuse, package="sp")
## Example #2. create feature dataset 'meuse'
arc.write(file.path(fgdb_path, "meuse\\pts"), data=meuse, coords=c("x", "y", "elev"), shape_info=list(type='Point',hasZ=TRUE,WKID=28992))
data(meuse.riv, package="sp")
riv <- sp::SpatialPolygons(list(sp::Polygons(list(sp::Polygon(meuse.riv)),"meuse.riv")))

## Example #3. write only geometry
arc.write(file.path(fgdb_path, "meuse\\riv"), coords=riv)


## Example #4. write a table
t <- Sys.time() # now
arc.write(file.path(fgdb_path, "tlb"), data=list(
  'f_double'=c(23,45),
  'f_string'=c('hello', 'bob'),
  'f_datetime'=as.POSIXct(c(t, t - 3600)) # now and an hour ago
  ))

## Example #5. from scratch as feature class
arc.write(file.path(fgdb_path, "fc_pts"), data=list('data'=rnorm(100)),
          coords=list(x=runif(100,min=0,max=10),y=runif(100,min=0,max=10)),
          shape_info=list(type='Point'))


## Example #6. write Raster
# make SpatialPixelsDataFrame
data(meuse.grid, package="sp")
sp::coordinates(meuse.grid) = c("x", "y")
sp::gridded(meuse.grid) <- TRUE
meuse.grid@proj4string=sp::CRS(arc.fromWktToP4(28992))

arc.write(file.path(fgdb_path, "meuse_grid"), meuse.grid)



## Example #7. write using a RasterLayer object
r <- raster::raster(ncol=10, nrow=10)
raster::values(r) <- runif(raster::ncell(r))

arc.write(file.path(fgdb_path, "raster"), r)

Create RasterLayer or RasterBrick (raster package)

Description

Create Raster* object from arc.raster TODO

Usage

## S4 method for signature 'arc.raster'
as.raster(x, kind ,...)

Arguments

x

arc.raster-class object

kind

internal parameter

...

.

Value

return RasterLayer for single band source or RasterBrick

Examples

## convert arc.raster to Rasterlayer object

  r.file <- system.file("pictures", "logo.jpg", package="rgdal")
  r <- arc.raster(arc.open(r.file))
  rx <- as.raster(r)

Convert 'arc.data' or 'arc.raster' object to 'sp' - SpatialDataFrame object or 'sf' - Simple Feature object

Description

Convert an ArcGIS arc.data to the equivalent sp data frame type. The output types that can be generated: SpatialPointsDataFrame, SpatialLinesDataFrame, or SpatialPolygonsDataFrame.

Convert an arc.raster object to a SpatialGridDataFrame object.

Convert an ArcGIS arc.data to the equivalent sfc object type. The output types that can be generated: POINT, MULTIPOINT, POLYGON, MULTIPOLYGON, LINESTRING, MULTILINESTRING.

Usage

arc.data2sp(x, ...)
arc.data2sf(x, ...)

Arguments

x

arc.data object, result of arc.select or arc.raster.

...

optional additional argument such wkt WKT spatial reference or crs coordinate reference string to assign to return object

Value

sp::Spatial*DataFrame object.

sf::sfc object.

See Also

arc.open, arc.select arc.raster

Examples

d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')

require("sp")
df.sp <- arc.data2sp(d)
## Not run: spplot(df.sp)





require("sf")
df.sf <- arc.data2sf(d)
## Not run: plot(df.sf)

Convert 'arc.shape' geometry object to sp::Spatial* - Spatial geometry or sf::sfc - simple feature geometry

Description

Convert arc.shape-class to sp spatial geometry: SpatialPoints, SpatialLines, or SpatialPolygons. Similar to arc.data2sp.

Convert arc.shape-class to sfc simple feature geometry: POINT, MULTIPOINT, POLYGON, MULTIPOLYGON, LINESTRING, MULTILINESTRING. Similar to arc.data2sf.

Usage

arc.shape2sp(shape, ...)
arc.shape2sf(shape, ...)

Arguments

shape

arc.shape-class

...

optional wkt WKT spatial reference or crs spatial reference string to assigne to return object

Value

an object of class sp::Spatial*.

an object of class sf::sfc, which is a classed list-column with simple feature geometries.

See Also

arc.shape, arc.data2sp arc.data2sf

Examples

d <- arc.select(arc.open(system.file("extdata", "ca_ozone_pts.shp", package="arcgisbinding")), 'ozone')
x <- arc.shape(d)


geom <- arc.shape2sp(x)
## Not run: plot(geom)


geom <- arc.shape2sf(x)
## Not run: plot(geom)

ArcGIS Enterprise and Online portals

Description

The arc.portal_connect() function to sign in to a portal. To check available portals call arc.check_portal(). Functions returns a list that contains active info and available portals.

Usage

arc.portal_connect(url, user, password)
  arc.check_portal()

Arguments

url

The URL of the portal to be signed in to. (character)

user

The user name of the user signing in to the portal. (character)

password

The password of the user signing in to the portal. (character)

Details

If url already in active list of portals connections then user and password parameters are optional

Value

An named list of portal connections.

  • url - The URL of the current portal.

  • user - The user name.

  • version - The portal version.

  • organization - The organization name.

  • session - TODO.

  • token - This is the Enterprise token for built-in logins.

  • portals - list of active portals.

  • offlines - list of offline portals.


Raster resample, pixel, comression types

Description

The following table shows the pixel_type value and the range of values stored for different bit depths:

Pixel type Bit depth Range of values that each cell can contain
"U1" 1 bit 0 to 1
"U2" 2 bits 0 to 3
"U4" 4 bits 0 to 15
"U8" Unsigned 8 bit integers 0 to 255
"S8" 8 bit integers -128 to 128
"U16" Unsigned 16 bit integers 0 to 65535
"S16" 16 bit integers -32768 to 32767
"U32" Unsigned 32 bit integers 0 to 4294967295
"S32" 32 bit integers -2147483648 to 2147483647
"F32" 32 bit Single precision floating point -3.402823466e+38 to 3.402823466e+38
"F64" 64 bit Double precision floating point 0 to 18446744073709551616

The following table shows the resamp_type value:

Resample type Definition
"NearestNeighbor" - Performs a nearest neighbor assignment and is the fastest of the interpolation methods. This is the default.
"BilinearInterpolation" - Performs a bilinear interpolation and determines the new value of a cell based on a weighted distance average of the four nearest input cell centers.
"CubicConvolution" - Performs a cubic convolution and determines the new value of a cell based on fitting a smooth curve through the 16 nearest input cell centers.
"Majority" - Performs a majority algorithm and determines the new value of the cell based on the most popular values within the filter window.
"BilinearInterpolationPlus" TODO
"BilinearGaussBlur" TODO
"BilinearGaussBlurPlus" TODO
"Average" TODO
"Minimum" TODO
"Average" TODO
"VectorAverage" TODO

Note The Bilinear and Cubic options should not be used with categorical data, since the cell values may be altered.

The following table shows the compression_type value:

Compression type Lossy or lossless Notes
"LZ77" Lossless
"JPEG" Lossy Can define a compression quality
"JPEG 2000" Lossy or lossless Can define a compression quality
"PackBits" Lossless Applies to TIFF only
"LZW" Lossless
"RLE" Lossless
"CCITT GROUP 3" Lossless Applies to TIFF only
"CCITT GROUP 4" Lossless Applies to TIFF only
"CCITT (1D)" Lossless Applies to TIFF only
"None" No data compression

References

  1. ArcGIS Help: Pixel Types

See Also

arc.raster, arc.raster-class


Progressor for ArcGIS Geoprocessing dialog

Description

Geoprocessing tools have a progressor, which includes both a progress label and a progress bar. The default progressor continuously moves back and forth to indicate the script is running. Using arc.progress_label and arc.progress_pos allows fine control over the script progress. Updating the progressor isn't necessary, but is useful in situations where solely outputting messages to the dialog is insufficient to communicate script progress.

Usage

arc.progress_label(label)
arc.progress_pos(pos = -1)

Arguments

label

Progress Label

pos

Progress position (in percent)

Details

Using arc.progress_label allows control over the label that is displayed at the top of the running script. For example, it might be used to display the current step of the analysis taking place.

Using arc.progress_pos allows control over the progrssor position displayed at the top of the running script. The position is an integer percentage, 0 to 100, that the progress bar should be set to, with 100 indicating the script has completed (100%).

Setting the position to -1 resets the progressor to the default progressor, which continuously moves to indicate the script is running.

References

Understanding the progressor in script tools

Note

  • Currently only functions in ArcGIS Pro, and has no effect in ArcGIS Desktop.

  • This function is only available from within an ArcGIS session, and has no effect when run from the command line or in background geoprocessing.

See Also

arc.progress_pos, "Progress Messages" example Geoprocessing script

Examples

## Not run: 
arc.progress_label("Calculating bootstrap samples...")
arc.progress_pos(55)

## End(Not run)